Programmes 2016 adaptés à la Polynésie française 231 © Ministère de l’éducation et de l’enseignement supérieur, de la jeunesse et des sports > www.education.pf Repères de progressivité Il est possible, lors de la résolution de problèmes, d'aller avec certains élèves ou avec toute la classe au-delà des repères de progressivité identifiés pour chaque niveau. L'étude d'une grandeur nécessite des activités ayant pour but de définir la grandeur (comparaison directe ou indirecte, ou recours à la mesure), d'explorer les unités du système international d'unités correspondant, de faire usage des instruments de mesure de cette grandeur, de calculer des mesures avec ou sans formule. Toutefois, selon la grandeur ou selon la fréquentation de celle-ci au cours du cycle précédent, les comparaisons directes ou indirectes de grandeurs (longueur, masse et durée) ne seront pas reprises systématiquement. Les longueurs : En 6ème , le travail sur les longueurs permet en particulier de consolider la notion de périmètre, et d'établir la notion de distance entre deux points, entre un point et une droite. L'usage du compas permet de comparer et reporter des longueurs, de comprendre la définition du cercle (comme ensemble des points à égale distance du centre). La construction et l'utilisation des formules du périmètre du carré et du rectangle interviennent progressivement au cours du cycle. La formule donnant la longueur d'un cercle est utilisée en 6ème . Les durées : Un travail de consolidation de la lecture de l'heure, de l'utilisation des unités de mesure des durées et de leurs relations ainsi que des instruments de mesure des durées est mené en CM1 et en CM2. Tout au long du cycle, la résolution de problèmes s'articule autour de deux types de tâches : calculer une durée à partir de la donnée de l'instant initial et de l'instant final, déterminer un instant à partir de la connaissance d'un instant et d'une durée. La maîtrise des unités de mesure de durées et de leurs relations permet d'organiser la progressivité de ces problèmes. Les aires : Tout au long du cycle, il convient de choisir la procédure adaptée pour comparer les aires de deux surfaces, pour déterminer la mesure d'une aire avec ou sans recours aux formules. Dès le CM1, on compare et on classe des surfaces selon leur aire. La mesure ou l'estimation de l'aire d'une surface à l'aide d'une surface de référence ou d'un réseau quadrillé est ensuite abordée. Une fois ces notions stabilisées, on découvre et on utilise les unités d'aire usuelle et leurs relations. On peut alors construire et utiliser les formules pour calculer l'aire d'un carré, d'un rectangle, puis en 6ème , calculer l'aire d'un triangle rectangle, d'un triangle quelconque dont une hauteur est connue, d'un disque. Contenance et volume : En continuité avec le cycle 2, la notion de volume sera vue d'abord comme une contenance. Au primaire, on compare des contenances sans les mesurer et on mesure la contenance d'un récipient par un dénombrement d'unités, en particulier en utilisant les unités usuelles (L, dL, cL, mL) et leurs relations. Au collège, ce travail est poursuivi en déterminant le volume d'un pavé droit. On relie alors les unités de volume et de contenance (1 L = 1 dm3 ; 1 000 L = 1 m3 ). Les angles : Au primaire, il s'agit d'estimer et de vérifier, en utilisant l'équerre si nécessaire, qu'un angle est droit, aigu ou obtus, de comparer les angles d'une figure puis de reproduire un angle, en utilisant un gabarit. Ce travail est poursuivi au collège, où l'on introduira une unité de mesure des angles et l'utilisation d'un outil de mesure (le rapporteur).
RkJQdWJsaXNoZXIy NzgwOTcw